33 resultados para Structural damage identification

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The success of open and endovascular repair of abdominal aortic aneurysms (AAA) is hampered by postoperative dilatation of the anatomical neck of the AAA, which is used for graft attachment. The purpose of this study was to determine whether the macroscopically non-diseased infrarenal aortic neck of AAA is histologically and biochemically altered at the time of operative repair. METHODS: We harvested full-thickness aortic wall samples as longitudinal stripes spanning from AAA neck to aneurysmal sac in 22 consecutive patients undergoing open surgical AAA repair. Control tissue was obtained from five organ donors and five deceased subjects undergoing autopsy without evidence of aneurysmal disease. We assessed aortic media thickness, number of intact elastic lamellar units, media destruction, and neovascularization grade and performed immunohistochemistry for matrix metalloproteinase (MMP)-9 and phosphorylated c-Jun N-terminal kinase (p-JNK). MMP-9 and p-JNK protein expressions were quantified using Western Blots. RESULTS: The median thickness of the aortic media was 1150 mum in control tissue (range, 1000-1300), 510 mum in aortic necks (250-900), and 200 mum in aortic sacs (50-500, P from nonparametric test for trend <.001). The number of intact elastic lamellar units was 33 in controls (range, 33-55), 12 in aortic necks (0-31) and three in aortic sacs (0-10, P < .001). The expression of MMP-9 and p-JNK as assessed by Western Blots (P = .007 and .061, respectively) and zymography (P for trend <.001) were up regulated in both the AAA neck and sac compared with controls. Except for p-JNK expression, differences between tissues were similar after the adjustment for age, gender, and type of sampling. CONCLUSION: The seemingly non-diseased infrarenal AAA neck in patients with AAA undergoing surgical repair shows histological signs of destruction and upregulation of potential drug targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Many patients taking statins often complain of muscle pain and weakness. The extent to which muscle pain reflects muscle injury is unknown. METHODS: We obtained biopsy samples from the vastus lateralis muscle of 83 patients. Of the 44 patients with clinically diagnosed statin-associated myopathy, 29 were currently taking a statin, and 15 had discontinued statin therapy before the biopsy (minimal duration of discontinuation 3 weeks). We also included 19 patients who were taking statins and had no myopathy, and 20 patients who had never taken statins and had no myopathy. We classified the muscles as injured if 2% or more of the muscle fibres in a biopsy sample showed damage. Using reverse transcriptase polymerase chain reaction, we evaluated the expression levels of candidate genes potentially related to myocyte injury. RESULTS: Muscle injury was observed in 25 (of 44) patients with myopathy and in 1 patient without myopathy. Only 1 patient with structural injury had a circulating level of creatine phosphokinase that was elevated more than 1950 U/L (10x the upper limit of normal). Expression of ryanodine receptor 3 was significantly upregulated in patients with biopsy evidence of structural damage (1.7, standard error of the mean 0.3). INTERPRETATION: Persistent myopathy in patients taking statins reflects structural muscle damage. A lack of elevated levels of circulating creatine phosphokinase does not rule out structural muscle injury. Upregulation of the expression of ryanodine receptor 3 is suggestive of an intracellular calcium leak.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Thirty-eight of the 73 consecutive acute ruptures of the anterior cruciate ligament (ACL) proven by a magnetic resonance imaging scan (MRI) in skeletally mature patients (16-55 years old) were classified as suitable for primarily conservative treatment. Patient selection was performed using a preoperative screening protocol based on the structural damage, clinical symptoms, compliance, sportive activity, and the consent of a well-informed patient. METHODS: In 12 of the 38 treated patients, the conservative protocol showed a good to very good outcome, 2 patients had persistent giving-way and were considering ACL reconstruction, 14 patients had a secondary ACL reconstruction in our clinic (average 5.3 months after injury), 9 patients were operated on in other hospitals (average 13.3 months after injury), and 1 patient was lost to follow-up. RESULTS: All patients with successful conservative treatment were able to perform low-risk pivoting sports and two patients are practicing high-risk pivoting sports. The average International Knee Documentation Committee (IKDC) score was 92.5 (82.8-98.9); the subjective overall knee function was 93% (60% to 100%). Of the 12 patients with good and very good results, 6 continued playing the same sports at an unreduced intensity, 4 patients reduced their activities slightly, and 1 patient played more sports than before. CONCLUSIONS: Although the authors performed a preoperative screening to select patients suitable for conservative treatment, almost two-thirds of the primarily conservatively treated ACL ruptures needed an operative reconstruction in the long term. In one-third of the patients, conservative treatment led to a good or very good result. At the endpoint of the study only 12 (16%) of a total of 73 patients with acute injuries of the ACL had successful conservative treatment. Therefore, patients must be comprehensively instructed about the treatment program and the chances of success of conservative ACL treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND AIM OF THE STUDY: Combined replacement of the aortic valve and ascending aorta using a composite graft represents the standard treatment for dilated aortic root with concomitant structural damage of the aortic valve, especially when the aortic valve cannot be preserved. Unfortunately, hemodynamic changes associated with prosthetic replacement of the aortic root have not been fully elucidated. The study aim was to compare hemodynamics within the replaced aortic root using either a prosthetic vascular graft with bulges mimicking the sinuses of Valsalva and including a stented pericardial valve, or a straight xenopericardial conduit and a stentless porcine valve. METHODS: Between July 2004 and March 2006, a total of 35 patients (mean age 65.2 years: range: 32-80 years) was enrolled into the present study. Aortic root replacement was performed in nine patients with a Valsalva graft (Gelweave Valsalva; Vascutek, Renfrewshire, UK) including a stented pericardial valve, and in 19 patients with a xenopericardial conduit containing a stentless porcine valve. All patients underwent postoperative magnetic resonance imaging (MRI). A control group of seven patients allowed for comparison with native aortic root hemodynamics. RESULTS: Maximum flow-velocity above the aortic valve as one marker of compliance of the aortic root was slightly higher in patients with a Valsalva graft compared to native aortic roots (1.9 m/s versus 1.3 m/s, p = 0.001), but was significantly lower than in patients with the xenopericardial graft without neo-sinuses (1.3 m/s versus 2.4 m/s, p < 0.001). CONCLUSION: The pre-shaped bulges in the prosthetic Valsalva graft effectively mimic the native sinuses of Valsalva, improve compliance of the aortic root, and result in a more physiologic flow pattern, as demonstrated by postoperative MRI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective Femoroacetabular impingement may be a risk factor for hip osteoarthritis in men. An underlying hip deformity of the cam type is common in asymptomatic men with nondysplastic hips. This study was undertaken to examine whether hip deformities of the cam type are associated with signs of hip abnormality, including labral lesions and articular cartilage damage, detectable on magnetic resonance imaging (MRI). Methods In this cross-sectional, population-based study in asymptomatic young men, 1,080 subjects underwent clinical examination and completed a self-report questionnaire. Of these subjects, 244 asymptomatic men with a mean age of 19.9 years underwent MRI. All MRIs were read for cam-type deformities, labral lesions, cartilage thickness, and impingement pits. The relationship between cam-type deformities and signs of joint damage were examined using logistic regression models adjusted for age and body mass index. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were determined. Results Sixty-seven definite cam-type deformities were detected. These deformities were associated with labral lesions (adjusted OR 2.77 [95% CI 1.31, 5.87]), impingement pits (adjusted OR 2.9 [95% CI 1.43, 5.93]), and labral deformities (adjusted OR 2.45 [95% CI 1.06, 5.66]). The adjusted mean difference in combined anterosuperior femoral and acetabular cartilage thickness was −0.19 mm (95% CI −0.41, 0.02) lower in those with cam-type deformities compared to those without. Conclusion Our findings indicate that the presence of a cam-type deformity is associated with MRI-detected hip damage in asymptomatic young men.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohol-induced liver disease (ALD) is a leading cause of nonaccident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively nonspecific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study, the metabolic changes associated with ALD were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-beta-d-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of a metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle pain and weakness are frequent complaints in patients receiving 3-hydroxymethylglutaryl coenzymeA (HMG CoA) reductase inhibitors (statins). Many patients with myalgia have creatine kinase levels that are either normal or only marginally elevated, and no obvious structural defects have been reported in patients with myalgia only. To investigate further the mechanism that mediates statin-induced skeletal muscle damage, skeletal muscle biopsies from statin-treated and non-statin-treated patients were examined using both electron microscopy and biochemical approaches. The present paper reports clear evidence of skeletal muscle damage in statin-treated patients, despite their being asymptomatic. Though the degree of overall damage is slight, it has a characteristic pattern that includes breakdown of the T-tubular system and subsarcolemmal rupture. These characteristic structural abnormalities observed in the statin-treated patients were reproduced by extraction of cholesterol from skeletal muscle fibres in vitro. These findings support the hypothesis that statin-induced cholesterol lowering per se contributes to myocyte damage and suggest further that it is the specific lipid/protein organization of the skeletal muscle cell itself that renders it particularly vulnerable.